1. Interaction between Oxygen Lone-Pair Orbitals of Ether and α , β -Unsaturated Ketone Functions in **3,5,6-Trimethylidene-7-oxabicyclo[2.2.l]heptan-2-one and 3,6-Dimethylidene-7-oxabicyclo[2.2.l]heptane-2,5-dione: A PE-Spectroscopic Investigation**

by Karl Röser¹), Pierre-Alain Carrupt, and Pierre Vogel^{*}

Section de chimie de l'Universit6 de Lausanne, **2,** rue de la Barre, CH-1005 Lausanne

and Evi Honegger²) and Edgar Heilbronner³)*

Institut fur Physikalische Chemie der Universitat Basel, Klingelbergstrasse **80,** CH-4056 Basel

(20.XI.89)

Controlled ozonolysis of **2,3,5,6-tetramethylidene-7-oxabicyclo[2.2.** llheptane **(1)** afforded 3,5,6-trimethyli**dene-7-oxabicyclo[2.2.l]heptan-2-one (2).** Ozonolysis of **2** gave a 1 :I mixture of **3,5-dimethylidene-7-oxabicyclo[2.2.1]heptane-2,6-dione (3)** and **3,6-dimethylidene-7-oxabicyclo[2.2.1]heptane-2,5-dione (4)**. The He(I α) photoelectron (PE) spectra **of 2** and **4** have been recorded. Comparison with the PE data of related systems, and with the result of *ab initio* STO-3G calculations, confirm the existence of significant through-bond interactions between the oxygen lone-pair orbitals n(C0) of the carbonyl functions and n(0) of the O(7) ether bridge.

Introduction. – The interpretation of PE-spectroscopic data of β , *y*-unsaturated ketones suggests the presence of interactions between the oxygen lone-pair orbitals n(C0) of the carbonyl group, and the π orbital π (CC) of the C=C bond [1-4]. For bicyclo-[2.2. llheptanone, bicyclo[2.2.2]octanone, and some of their derivatives, we have shown that this interaction can be viewed as a subtle interplay between basis energy shifts $\delta A(n_n(CO))$ and $\delta A(\pi(CC))$, and the crossterm κ between these two orbitals, the latter being of both 'through-bond' and 'through-space' origin [S]. Changes in the basis energies $A(n_{n}(CO))$ and $A(\pi(CC))$, and in the crossterm κ , due to the interaction of the C=C function with an electrophilic reagent [6], can be invoked to explain the electron-donating ability of the homoconjugated C=O group in β , *y*-unsaturated ketones [7]. 'Throughbond' interactions between the $n_n(CO)$ orbitals in 1,2-diones [8] [9], 1,3-diones [9] [10], 1,2,3-triones [9] $[10a]$ $[11]$, 1,4-diones $[12]$, 1,5-diones $[13]$, or in p-benzoquinone, and its derivatives [14] have also been investigated by PE spectroscopy.

We now report the synthesis of the new 7-oxanorbornanone derivatives 3,5,6-tri**methylidene-7-oxabicyclo[2.2.l]heptan-2-one (2), 3,5-dimethylidene-7-oxabicyclo[2.2.1]** heptane-2,6-dione **(3),** and **3,6-dimethylidene-7-oxabicyclo[2.2.l]heptane-2,5-dione (4),** and the PE spectra of **2** and **4.** The assignment and interpretation of the PE spectra, based

^{&#}x27;) Present address: *BASF*, D-6700 Ludwigshafen.

^{2,} Present address: *Digital Equipment Coporation AG,* Munchensteinerstrasse 43, CH-4002 Basel

³) Present address: Grütstrasse 10, CH-8704 Herrliberg.

on the correlation with orbital energies (Koopmans' theorem) obtained from *ab* initio STO-3G calculations, confirm the existence of a substantial interaction between the oxygen lone-pair orbitals $n_n(CO)$ of the carbonyl group(s) and the $n_n(O)$ orbital of the ether-bridge 0-atom.

Experimental Results. – *Preparation of the Samples.* Ozonolysis (3% O₃ in O₂) of **2,3,5,6-tetramethylidene-7-oxabicyclo[2.2.** llheptane **(1)** [15] in toluene gave successively the corresponding trienone **2** and a 1 : 1 mixture of dienediones **3** and **4** (workup with Me,S). Ozonolysis of pure **2** gave also a 1 : 1 mixture **3/4.** The lack of selectivity can be explained by the high reactivity of $O₁$ [16]. The selectivity could not be improved by changing the solvent (hexane, CCl₄, CHCl₃, CH₂Cl₂, acetone, CH₄, freon) and/or the temperature $(-140^{\circ}$ to $-50^{\circ})$. The dienediones 3 and 4 could be readily separated by gas-phase chromatography of dilute solutions. Compounds **2** and **4** were obtained pure. They are unstable at 20" and polymerize in the condensed state. The cis-dione **3** is even less stable and polymerized quickly above 0° , even in dilute solution.

PE Spectra. The He($I\alpha$) PE spectra of the trienone 2 and of the dienedione 4 are shown in Fig. 1. The observed band position I_{i}^{m} , which refer to the band maxima (cf. next paragraph), are collected in the Table, together with those of **1** [17], and with the orbital energies ε , of the top seven molecular orbitals of 2 and 4, obtained by the STO-3G procedure [18], using MNDO [19] energy-optimized geometries.

Assignment. -Our first task consists in assigning the observed bands in the PE spectra of **2** and **4** to radical cation states, i.e. to Koopmans states [20]. In the absence of ancillary experimental information (e.g. vibrational fine-structure, energy dependence of band

Molecule 1					Molecule 2				
Band	$I_i^{\rm m}/\rm eV$	$\varepsilon_{\rm i}$	Orbital	Type	Band	$I_i^{\rm m}/\rm eV$	$\varepsilon_{\rm i}$	Orbital	Type
$^\circledR$	8.60	-7.08	5a,	$\pi(AA)$	➀	9.20	7.42	28a	π ($-a_2$; AA)
$^\circledR$	9.22	-7.56	$7b_1$	$\pi(SA)$	➁	9.42	8.09	27a	$p(O)$; $p(CO)$
◑	9.62	-8.81	7b ₂	p(O)	⊙	10.25	8.65	26a	$\pi(-b_1; SA)$
⊕	10.40	-9.50	6b ₂	$\pi(AS)$	⊕	10.55	9.59	25a	p(O)
$^\circledR$	10.65	-9.78	$9a_1$	π (SS)	จ	11.65	10.96	24a	π (\leftarrow b ₂ ; AS)
◉	12.1	-11.92	?	σ	◉	12.05	11.11	23a	$s(O); \pi(CO)$
					℗	13.0	12.49	22a	σ
Molecule 4									
Band	$I_i^{\rm m}/\rm eV$	$\varepsilon_{\rm i}$	Orbital	Type					
$^\circledR$	9.40	7.96	14b	$p(O)$; $p(CO; b)$					
$^\copyright$	9.85	8.27	14a	π (\leftarrow a ₂ ; AA)					
⊚	10.52	9.02	13 _b	π (\leftarrow b ₁ ; SA)					
\circledast	11.08	9.60	13a	p(CO; a)					
⊙	11.85	11.32	12 _b	$p(O)$; $p(CO; b)$					
◉	12.55	11.44	12a	$s(O); \sigma$					
$^\circledR$	13.3	12.33	11b	π (CO)					

Table. *Position* **I;"** *and Assignment of the Bands in the PE Spectra of Compounds* **1,2,** *und4.* The band numbers refer to those given in *Fig. I.*

intensitities, *etc.*), we rely on the correlation of observed band positions I_j^m (= position of band maximum) with the computed *ab initio* STO-3G orbital energies ε_j (*cf.* the *Table*), assuming that $I_j^m \approx I_j^v$ (= vertical ionization energy), and that $I_j^v = a + b\varepsilon_j$.

Although integrated intensities of PE band are not always **a** safe guide, one can not neglect them for closely related molecules, such as **1, 2,** and **4.** Comparing their PE spectra, one notices that the second band in the spectrum of **2** (labeled @@ in *Fig. 1)* has an integrated intensity equal to the sum of the intensities of the slightly split bands σ and *0.* It must, therefore, be composed of two partial bands. From both the *Franck-Condon* envelope and the half-width of the double band $\textcircled{3}\textcircled{4}$ at $I_{3,4}^{\text{m}} = 10.4 \text{ eV}$, we deduce that the positions of the partial bands are $I_3^m \approx 10.25$ eV and $I_4^m \approx 10.55$ eV, as listed in the *Table*. (On the other hand, the first four bands in the PE spectrum of **4** are all single.)

The linear regression of the I_j^m on the ε_j , based on the seven first bands in the PE spectra of 2 and 4, is – relative to the means $\overline{I_i^m} = 11.048 \text{ eV}$ and $\overline{\epsilon_i} = 9.875 \text{ eV}$ – given by:

$$
I_j^m/eV = (11.048 \pm 0.061) - (0.794 \pm 0.037)(\varepsilon_j/eV + 9.875)
$$
 (1)

This regression, which includes the standard deviations of the mean *If"* and of the slope, is based on 12 degrees of freedom, and is characterized by a residual variance about the regression of $V(I_i^m) = 0.052 \text{ eV}^2$ (standard error $SE(I_j^m) = 0.228 \text{ eV}$).

We note in passing that assigning the band at 10.4 eV in the PE spectrum of 2 to a single *Koopmans* state would yield a regression of type (I) with residual variance $V(I_i^m) = 0.136$ eV² (11 degrees of freedom). The corresponding variance ratio (with respect to that of (1)) is $F = 0.136/0.052 = 2.61$, which shows that the assignment of two *Koopmans* states to the band now labeled @@ leads to a significant improvement of the regression on a 90% confidence level $(F_{0.9}(12,11) = 2.21)$. This provides additional support for the proposed assignment. However, it must be borne in mind that the assignments given in the *Table* are nevertheless tentative ones, being tied intimately to the assumed reliability of the *ab initio* STO-3G model calculations. In the ensuing discussions, we shall use these assignments as a working hypothesis.

Band Correlation. - **As** usual, the correlation of the bands in the PE spectra of **1, 2,** and **4** relies *a)* on the symmetry and nodal properties of the computed molecular orbitals of the molecules, *b)* on the orbital character, *i.e.* the dominant localised (or semi-localked) orbitals that can be recognised in the orbital diagrams of the vacated canonical orbitals *(cf. Fig.* 2), and *c)* on the size of the observed band shifts, which occur under the influence of the replacement of the exocyclic CH, groups by an 0-atom.

Molecule 1. The assignment of the PE spectrum of 1 (symmetry C_{γ}) has been established in [17]. It is rather straightforward, being almost completely symmetry-conditioned. The canonical π orbitals assigned to the bands $(0, 0, 0)$, $(0, 0, 0)$ are practically linear combinations of the localised two-centre π orbitals π _i in positions $j = 2, 3, 5,$ and 6, whereas band \odot is linked to an orbital strongly localised on the atomic 2p(O) orbital of the 0-atom in position 7, as shown in the following diagram:

The symbols S (= symmetric) and A (= antisymmetric) refer to the behaviour with respect to reflection in the xz- and the yz-plane (in this order).

In contrast, it is almost impossible to assign the strongly overlapping band system beginning with band \textcircled{a} at $I \approx 12 \text{ eV}$. It is due to electron ejections from σ orbitals, *e.g.* from ribbon orbitals of the six-membered ring of C-atoms [21].

Molecule **4.** Replacement of the two exocyclic CH, groups in positions 2 and 5 of

molecule **1** by 0-atoms, to yield molecule **4,** leaves the number of electrons, and thus the number of occupied molecular orbitals, invariant. The descent in symmetry from C_{2n} to C_2 mixes the nine a_1 and the five a_2 orbitals, and the seven b_1 and seven b_2 orbitals of 1 to yield the fourteen a and the fourteen b orbitals of **4,** respectively. This introduces a modest, but important restriction for possible correlations. In addition, the following effects are expected on the basis of previous experience [22].

1) Replacement of CH₂ by O in hydrocarbons RR^{\prime} C=CH₂ lowers the self-energy of the two-centre basis π orbital by roughly 3.0 eV [5] [22]. This is too large a change to allow the application of a simple first-order perturbation treatment for the correlation of the π bands in the spectra of **1** and **4,** because of the extensive orbital mixing involved (see below). The only conclusion that can be drawn is that electron ejection from orbitals strongly localised on the CO group π orbitals will yield bands imbedded in the high energy band system above 13 eV of the PE spectrum of **4.**

2) In addition, the above replacement introduces into **4** a pair of lone-pair atomic orbitals, which we designate by $2p(CO)$. Again, previous experience tells us that their basis energies must be close to -10 eV [5] [22]. Their in-phase *(a)* and out-of-phase *(b)* linear combinations (with respect to the $C₂(z)$ rotation) will interact with σ orbitals of the appropriate symmetry. In addition, the b combination interacts with the $2p(0)$ orbital of the 0-atom in position 7.

From the computed orbital diagrams presented in *Fig.* 2, it is a simple matter to assign orbital labels and orbital types to the individual canonical orbitals of **4.** These are given in the *Table.* As we shall show below, this is also the sequence expected on qualitative grounds, and there is little doubt that it is essentially the correct one, always within the *Koopmans* approximation we are using.

In *Fig. 3* is shown a bar diagram of the low energy bands in the PE spectra of **1** and **4,** including (in abreviated form) the labels of the corresponding molecular orbitals.

Molecule 2. This molecule, belonging to the point group C_1 , has lost all symmetry elements. However, its PE spectrum is nicely bracketed by those of the molecules **1** and **4,** so that its assignment is rather straightforward. This is indicated by the correlation lines in *Fig. 3.* Comparison with the computed molecular orbitals, presented in diagramatic form in *Fig.* 2, reveals a complete one-to-one agreement, which is a reasonably convincing indication that the proposed assignment (listed in the *Table)* is essentially correct.

We shall, therefore, accept the assignment proposed in the *Table* and in *Fig.3* as a basis for the discussion presented in the next section.

Discussion. – We discuss first the manifold of π orbitals, *i.e.* the assignments of the π bands in PE spectra of **1,2,** and **4,** with reference to the parent hydrocarbon *5* [17]. There, the π -orbital energies are well described in terms of a simple LCBO model (= linear combination of bond orbitals), based on the four π orbitals π _i (j = 2,3,5,6) with self-energies $A(\pi) = -9.4 \text{ eV}, \beta(\pi \pi) = -0.8 \text{ eV}$ and a homoconjugation interaction $\kappa(\pi \pi) = -0.2$ eV [17]. The influence of the 0-atom in **1** manifests itself only in a mean shift $\delta A(\pi) = -0.35$ eV of the π orbital energies. The parameters of this extremely crude approximation include of course 'through-space', 'through-bond', and inductive interactions between pairs of basis functions π_i in an unspecified way. The corresponding linear combinations are those shown in (2).

 \mathbf{H}

Fig.2A. *Representation of the highest occupiedMO's of* **2** *as culculuted by the* ab **initio** *STO* **3G** *technique* **(see the** *Table)*

 π (\leftarrow **b**₁; **SA**)

H

 $\pi\left(\leftarrow\mathbf{a}_{2},\mathbf{AA}\right)$

 $p(CO; a)$

Fig. 2B. *Representation of the highest occupied MO's of* **4** *us calculated by the* ab **initio** *STO* **3G** *technique* **(see the** *Table)*

Fig. *3. Bar diagram of the low-energy bands in the PE spectra of* **1,2,** *and* **4**

To a first approximation, the replacement of a terminal $CH₂$ group in a monoene RR'C=CH₂ by an O-atom shifts the basis $\pi_{\rm{co}}$ energy A($\pi_{\rm{co}}$) by *ca.* -3 eV with respect to the basis energy $A(\pi_{cc}) = -10.2$ eV of butadiene, if R and R' are larger alkyl moieties $(R = R' = H: \delta A(\pi_{CO}) = -3.99 \text{ eV}; R = Me, R' = H: \delta A(\pi_{CO}) = -3.21 \text{ eV}; R = R' = Me:$ $\delta A(\pi_{\text{co}}) = -3.14 \text{ eV}$ [23]). The same value $(\delta A(\pi_{\text{co}}) = -3.25 \text{ eV})$ is obtained by comparing the π -ionization energies of butadiene (9.0 eV, 11.4 eV [23]) with those of acrolein (11.0 eV, 13.8 eV [24]). In addition, the latter data yield an energy shift of $\delta A(\pi_{cc}) = -0.75$ eV for the basis orbital of the C=C bond in acrolein, due to the neighbouring CO group. Finally, as can be deduced for example from a comparison of the n-ionization energies of molecules such as **6** [25] (8.48 eV, 9.15 eV, 10.30 eV) and **7** (8.90 eV, 10.91 eV [5]), a CO group in position 2 will lower the basis energy of the π orbital in position 6 by roughly $\delta A(\pi_{\text{homo}}) = -0.5 \text{ eV}$.

Using all these parameters within the simple LCBO model mentioned above, yields ionization energies, which mimic reasonably well the observed π -band positions in the spectra **1, 2,** and **4,** *i.e.:*

This empirical result supports, therefore, the assignment derived on the basis of the *ab initio* calculation.

Once the π bands have been identified in the PE spectra, the remaining lower-energy bands must necessarily be those due to electron ejection from canonical orbitals dominated by the lone-pair basis orbitals $2p(O)$ of the bridging O atom, and $2p(O)$ of the CO group(s). Our starting point for the basis energy $A(2p(0))$ of the O-atom in position 7, is given by $-I_3^m = A(2p(0)) = -9.62$ eV from the spectrum of 1. Replacement of a C=C group in position 2 or 5 by a CO group will shift $A(2p(O))$ by *ca.* $\delta A(2p(O)) = -0.5$ eV. The basis energy of the CO lone-pair orbital 2p(CO) is expected to be in the range of $A(2p(CO)) = -9.5$ eV to -10 eV (in formaldehyde -10.9 eV, in acetaldehyde -10.3 eV, in acroleine -10.1 eV, in acetone -9.7 eV, in $7 - 9.3$ eV, all values taken from the PE spectra [S] [23], assuming that *Koopmans* theorem holds).

Using for the molecule 2 $A(2p(CO)) = -9.8$ eV, and the perturbed value $A'(2p(O)) = -9.6 + (-0.5)$ eV = -10.1 eV, to take into account the influence of the CO group (see above), we find that we are in the presence of an almost degenerate pair of lone-pair basis orbitals with a central energy value of -9.95 eV. This agrees nicely with the value derived from the ionization energies of the lone-pair bands 2 and 4, *i.e.* $-I_{\text{ionc-pair}} = -(I_2^m + I_4^m)/2 = -10.0 \text{ eV}$. From the split $-(I_2^m - I_4^m)/2 = 1.13 \text{ eV}$, one calculates that the cross-term between the two lone-pairs is $\kappa(2p(O), 2p(CO)) = -0.55$ eV, the negative sign being choosen in accord with the nodal properties of the linear combinations depicted in *Fig.* 2. The crudeness of such an approximation is illustrated by the fact that the lone-pair orbitals mix extensively with the $\pi_4 + \pi_5$ type linear combination of the C=C π -orbitals of b_2 parentage, as can be seen from the diagrams in *Fig. 2*.

For the molecule **4,** we make the *ad hoc* assumption that the presence of a second CO group will shift the basis energies $A(2p(CO)) = -9.8$ eV of each 2p(CO) lone-pair orbital by $\delta A(2p(CO)) = -0.5$ eV, to yield $A'(2p(CO)) = -10.3$ eV. Furthermore, the 2p(O) orbital suffers now the influence of two CO groups, which leads to a basis energy of $A'(2p(O)) = -9.6 \text{ eV} + 2(-0.5 \text{ eV}) = -10.6 \text{ eV}$. Note that the two basis energies are again close together. Using the same cross-term as above, *i.e.* $\kappa(2p(O), 2p(CO)) = -0.55 \text{ eV}$ for the interaction of one of the $2p(CO)$ atomic orbitals with the central $2p(O)$ orbital, one calculates, according to this very simple model, the following positions for the lone-pair bands in the PE spectrum of **4:**

$$
I_j^m/eV \text{ calc} \t 9.65 \t 10.3 \t 11.25
$$

$$
I_j^m/eV \text{ obs} \t 9.4 \t 11.1 \t 11.9 \t (4)
$$

Not unexpectedly, the agreement between calculated and observed lone-pair ionization energies is not very good, because of the complete neglect of the interactions of the $2p(O)$

and $2p(CO)$ orbitals with other orbitals, but the important point is that one has to introduce again a considerable interaction between $2p(O)$ and the $2p(CO)$ to account for the wide split, observed between the corresponding PE bands, which cover a range of about 2.5 eV.

Although the results of our qualitative analysis point to sizeable interactions between the three lone-pair orbitals, we cannot distinguish at this level whether they are of 'through-space' or 'through-bond' type. However, the *ab initio* calculations, summarized in *Fig.* 2, can be interpreted to indicate that 'through-bond' interactions dominate the picture.

This interaction is expected to enhance the nucleophilicity of the $\sigma(C(1)-C(2))$ bond in **7-oxabicyclo[2.2.l]heptan-2-ones.** This property is probably responsible of the high regioselectivity observed for the *Baeyer- Villiger* oxidations of ketones **8** [26], **9** [27], and **10** [28] that give exclusively the corresponding lactones **11,12,** and **13** *(Scheme).* Work is underway in our laboratories to confirm this hypothesis⁴ $)$ ⁵).

Conclusions. - The new trienone **2** and dienedione **4** obtained by controlled ozonolysis of tetraene **1** reveal the existence of significant through-bond interactions between the oxygen lone-pair orbitals of the ethereal $(n(O))$ and carbonyl $(n(CO))$ functions of **7-oxabicyclo[2.2.l]heptan-2-ones.**

⁴) Through-bond interactions of type n(N:), $\sigma \mapsto \pi(CO)$ and n(N:), $\sigma \mapsto n(CO)$ have already been evidenced in 3-ketopiperidines [29]. Through-space interactions between n(N:) and n(C0) lone-pairs have been discussed in relation with the **PE** spectra **of 2-ethoxycarbonyl-2-aabicyclo[2.2.2]octan-5-one** [30].

Through-bond interactions between $n(O)$ and π levels in allylic ethers have been evidenced by PE spectroscopy [31]. Through-bond interactions between the nonbonded electron pairs $n(0)$, $n(N)$, and $n(S)$ in 1,4-dioxane, piperazine, and 1,4-dithiane, respectively, have also been discussed [32]. *5,*

The Lausanne group thanks *F. Hoffmann-La Roche AG*, Basel, the *Fonds Herbette*, Lausanne, and the *Swiss National Science Foundation* for generous financial support. We are grateful to the Ecole Polytechnique Fédérale de Lausanne (Mr. *P. Santschi)* and its Centre de Calcul *(Cray IS)* and the Institut fur Informatik of the University of Zürich (Prof. Dr. *K. Bauknecht*) for computing time (NASXL60 machine).

Experimental Part

General. **See** [33].

3,5,6- *Trimethylidene-7-oxabicyclo[2.2.1]heptan-2-one* (2). A 97:3 mixture of O_2/O_3 (0.5 dm³/min) was bubbled through a soln. of 1 (0.6 g) [IS] in anh. toluene (50 ml) cooled to -90°. After disappearance of *ca.* 60% of 1 (TLC or ¹H-NMR), Me₂S (0.2 ml) was added and the mixture allowed to warm to 20 $^{\circ}$ (1 h). The soln. was concentrated to *ca.* 1 ml by evaporation *in vacuo* and purified by column chromatography on silica gel (30 g, petroleum ether (350 ml), then petroleum ether/Et,O 95 *:5).* The first fraction gave 200 mg (33%) of 1, the second fraction yielded 220 mg (55 *YO)* of 2, yellowish oil that polymerized quickly at *5'.* It can be stored under N, atm at -40°. UV (CHCl₃): λ_{max} : 248, 272, 365. IR (film): 3120, 3020, 2950, 1770, 1675, 1665, 1440, 1410, 1280, 1270, 1235, 1210, 1185, 1100, 980,955, 935, 910. 'H-NMR (CCI,): 5.92, 5.59, 5.44 (3 s, 3 H); 5.39 **(s,** 2 H); 5.29, 5.22, 4.65 (3 s, 3 H). ¹³C-NMR (CDCI₃/CCI₄ 1:1): 195.1, 145.1, 144.2, 140.6 (4 s, 4 C); 113.6, 107.6, 103.7 (3 *t*, 3 CH₂=C); 85.5, 84.1 (2 *d*, C(1), C(4)). MS (70 eV): 148 (8, M⁺), 120 (7), 119 (9), 92 (15), 91 (100), 85 (6), 83 (9), 66 (8), 65 (32), 64 (5) , 63 (11) , 62 (6) , 53 (7) .

3,5-Dimethylidene-7-oxabicyclo[2.2.I]heptane-2,6-dione **(3)** *and 3,6-Dirnethylidene-7-oxabicyclo[2.2.1] heptane-2,5-dione* (4). 3% O_2 in O_2 (1 dm³/min) was bubbled through a soln. of 1 (50 mg, 0.34 mmol) in anh. toluene (5 ml) cooled to -75° for 3 min. Me₂S (0.07 ml) was added and the mixture allowed to warm to 20 $^{\circ}$ (3 h). The solvent was evaporated and the residue extracted with petroleum ether. The extract was purified by prep. GC *(OV* 17, $T=100-160^{\circ}$, $4^{\circ}/$ min, He, 40 ml/min). The first fraction $(t_R 10.7 \text{ min})$ gave 4, (10–20%, internal standard) yellow oil that polymerized at 20". The second fraction afforded **3** (10-30%, internal standard: toluene), yellow oil that polymerized quickly at 0", even in dilute soh.

Data of 3. UV (CHCl₃): λ_{max} ; 256, 336, 354, 408. ¹H-NMR (CDCl₃): 6.1 *(m,* 2 H of CH₂=C(3) and CH₂=C(5) *syn* to CO); 5.8 (br. *dt,* 4J=1.5, 1.0, H-C(4)); 5.6 (br. *d,* 4J=l.0, 2 H of CH2=C(3) and CH,=C(S) *anti* to CO); 4.5 $(d, {}^{4}J=1.5, H-C(1)).$

Data of 4. UV (CHCI₃): λ_{max} : 248, 340, 355, 392, 410. ¹H-NMR (CDCI₃): 6.3 *(d, ⁴J*=0.7, 2 H of CH₂=C(3) and $CH_2=C(6)$ *syn* to CO); 5.72 *(d,* ⁴J=1, 2 H of CH₂=C(3) and CH₂=C(6) *anti* to CO); 5.0 *(m,* H-C(1), H-C(4)). MS (70 eV): 150 (19, *M"),* 122 (IS), 121 **(2),** 94 (14), 83 (IOO), 67 (19), 66 (43), 55 (59).

REFERENCES

- D. Chadwick, D.C. Frost, L. Weiler, J. *Am. Chem.* **Soc.** 1971,93,4320,4962.
- *G.* Hentrich, E. Gunkel, M. Klessinger, J. *Mol. Struct.* 1974, *21,* 231.
- W. Schafer, H. Schmidt, A. Schweig, R. W. Hoffmann, H. Kurz, *Tetrahedron Lett.* 1974, 1953.
- N. Bodor, M. J. S. Dewar, **Z.** B. MaksiC, *Croatica Chem. Acta* 1976, *48,* 9.
- P.-A. Carrupt, R. Gabioud, A. Rubello, P. Vogel, E. Honegger, E. Heilbronner, *Helv. Chim Acta* 1987, *70,* 1540; *rJ:* also: K.N. Houk, *Chem. Rev.* 1976, *76,* 1.
- P.-A. Carrupt, P. Vogel, *Tetrnhedron Lett.* 1982, 23, 2563; K.A. Black, P. Vogel, J. *Org. Chem.* 1986, *51,* 5341; M. Avenati, P.-A. Carrupt, D. Quarroz, P. Vogel, *Helu. Chim. Acta* 1982,65, 188.
- P.-A. Carrupt, P. Vogel, J. *Phys. Org. Chem.* 1988, *I,* 287; P.-A. Carrupt, P. Vogel, *Tetrahedron Lett.* 1984,25, 2879.
- a) D. W. Turner, C. Baker, A. D. Baker, C. R. Bmndle, 'Molecular Photoelectron Spectroscopy', Wiley-Interscience, New York, 1970; b) **W.** von Niessen, *J. Am. Chem. Soc.* 1977, 79, 7151, and ref. cit. therein; D. Dougherty, J. J. Bloomfield, G. R. Newkome, J.F. Arnett, S.P. McGlynn, J. *Phys. Chem.* 1976,80,2212; R. Gleiter, R. Bartetzko, P. Hofmann, H.-D. Scharf, *Angew. Chem.* 1977, 89, 414; R. Bartetzko, R. Gleiter, J. L. Muthard, L.A. Paquette, J. *Am. Chem. Soc.* 1978, *100,* 5589; T. Koenig, M. Smith, W. Snett, *ibid.* 1977, 99, 6663.
- D. Dougherty, P. Brint, S.P. McGlynn, *J. Am. Chem.* Soc. 1978, *100,* 5597; R. Gleiter, W. Dobber, M. Eckert-MaksiC, *Nouv.* J. *Chim.* 1982, *6,* 123.
- **[lo]** a) R. Gleiter, P. Hofmann, P. Schang, **A.** Sieber, *Tetrahedron* **1980, 36, 655;** b) R. Gleiter, W. Schafer, H. Warnhoff, *J. Org. Chem.* **1985**, 50, 4375.
- [Ill P. Bischof, R. Gleiter, P. Hofmann, *Helv. Chim. Acta* **1975,** *58,* **2130;** E. Beck, P. Hofmann, A. Sieber, *Tetrahedron Lett.* **1981,4683.**
- **[I21** D. C. Frost, N.P.C. Westwood, N. H. Werstiuk, *Can. J. Chem.* **1980,58, 1659;** R. Gleiter, G. Jahne, M. Oda, M. Iyoda, *J. Urg. Chem.* **1985, 50,678.**
- **[13]** G. Jahne, R. Gleiter, *Angew. Chem. Suppl.* **1983,661.**
- **[I41** D. Dougherty, S.P. McGlynn, *J. Am. Chem.* Soc. **1977, 99, 3234,** and ref. cit therein.
- **[I51** C. Mahaim, P.-A. Carrupt, J.-P. Hagenbuch, A. Florey, P. Vogel, *Helv. Chim. Acta* **1980, 63, 1149.**
- **[16]** R. Criegee, *Angew. Chem. Int. Ed.* **1975,14, 745;** P. S. Bailey, in 'Ozonation in Organic Chemistry', Academic Press, New York, **1978,** Vol.1; **1982,** Vol.11; R. Sustmann, *Pure Appl. Chem.* **1974,** *40,* **569;** K.N. Houk, *Topics Curr. Chem.* **1979, 79, 1.**
- **[17]** M. Mohraz, **C.** Batich, E. Heilbronner, P. Vogel, P.-A. Carrupt, *Reel. Trav. Chim. Pays-Bas* **1979,** *98,* **361.**
- **[18] W.** J. Hehre, W.A. Lathan, R. Ditchfield, M.C. Newton, **J.A.** Pople, Program **No.36,** Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind., USA; M. D. Newton, W. A. Lathan, W. J. Hehre, J. A. Pople, *J. Chem. Phys.* **1970,52, 4064.**
- **[19]** M. J. **S.** Dewar, W. Thiel, *J. Am. Chem. SOC.* **1977, 99, 4899, 4907.**
- **[20]** T. Koopmans, *Physica* **1934,** I, **104.**
- **[21]** R. Hoffmann, P. D. **MollBre,** E. Heilbronner, *J. Am. Chem.* Soc. **1973, 95,4860.**
- **[22]** A. D. Baker, C. Baker, C. R. Brundle, D. W. Turner, *Int. J. Mass Spectrom. Ion Phys.* **1968,285,2.**
- **[23]** C. R. Brundle, M. B. Robin, *J. Am. Chem. SOC.* **1970, 92, 5550;** M. Beez, G. Bieri, H. Bock, E. Heilbronner, *Helv. Chim. Acta* **1973, 56, 1028.**
- **[24]** H. Van Dam, A. Ostram, *J. Electron Spectrosc. Relat. Phenom.* **1978, 13, 273;** P. Maschet, G. Mourier, *ibid.* **1978, 14,77;** G. Granozzi, D. **Ajo, I.** Fragola, *ibid.* **1980,** 18, **267.**
- **[25]** G. Burnier, L. Schwager, P. Vogel, *Helv. Chim. Acta* **1986, 69, 1310.**
- **[26]** A. Warm, P. Vogel, *J. Org. Chem.* **1986,51, 5348;** A. Warm, P. Vogel, *Helv. Chim. Acta* **1987, 70, 690.**
- **[27]** J. Wagner, P. Vogel, *J. Chem. SOC., Chem. Commun.* **1989, 1634.**
- **[28]** Y. Auberson, P. Vogel, *Helv. Chim. Acta* **1989, 72, 278.**
- **[29] A.** Imamura, K. Hirao, *Tetrahedron* **1979,35,2243;** see also: **T.** Sasaki, **S.** Eguchi, T. Kiriyama, Y. Sakito, H. Kato, *J. Chem. Soc.. Chem. Commun.* **1974,725.**
- **[30]** F. Carnovale, T.-H. Gan, J. B. Peel, **A.** B. Holmes, *J. Chem.* **SOC.,** *Perkin Trans.* **2 1981,991.**
- **[31]** A. D. Bain, J.-C. Biinzli, D.C. Frost, *L.* Weiler, *J. Am. Chem. SOC.* **1973, 95, 291** ; H. Schmidt, A. Schweig, *Tetrahedron* **Lett. 1973, 1437;** B. J.M. Neijzen, R.F. Schmitz, G. W. Klumpp, C.A. de Lange, *Tetrahedron* **1975, 31, 873;** R. Gleiter, P. Schang, W. Adam, H.J. Eggelte, I. Erden, A.J. Bloodworth, *J. Electron Spectrosc. Rel. Phenom.* **1980,** *19,* **223.**
- **[32]** D. Gonbeau, **M.** Loudet, G. Pfister-Guillouzo, *Tetrahedron* **1980,36, 381.**
- **[33] J.** Wagner, E. Vieira, P. Vogel, *Helv. Chim. Acta* **1988,** *71,* **624.**